Cerebral Changes Occurring in Arginase and Dimethylarginine Dimethylaminohydrolase (DDAH) in a Rat Model of Sleeping Sickness

نویسندگان

  • Donia Amrouni
  • Anne Meiller
  • Sabine Gautier-Sauvigné
  • Monique Piraud
  • Bernard Bouteille
  • Philippe Vincendeau
  • Alain Buguet
  • Raymond Cespuglio
چکیده

BACKGROUND Involvement of nitric oxide (NO) in the pathophysiology of human African trypanosomiasis (HAT) was analyzed in a HAT animal model (rat infected with Trypanosoma brucei brucei). With this model, it was previously reported that trypanosomes were capable of limiting trypanocidal properties carried by NO by decreasing its blood concentration. It was also observed that brain NO concentration, contrary to blood, increases throughout the infection process. The present approach analyses the brain impairments occurring in the regulations exerted by arginase and N(G), N(G)-dimethylarginine dimethylaminohydrolase (DDAH) on NO Synthases (NOS). In this respect: (i) cerebral enzymatic activities, mRNA and protein expression of arginase and DDAH were determined; (ii) immunohistochemical distribution and morphometric parameters of cells expressing DDAH-1 and DDAH-2 isoforms were examined within the diencephalon; (iii) amino acid profiles relating to NOS/arginase/DDAH pathways were established. METHODOLOGY/PRINCIPAL FINDINGS Arginase and DDAH activities together with mRNA (RT-PCR) and protein (western-blot) expressions were determined in diencephalic brain structures of healthy or infected rats at various days post-infection (D5, D10, D16, D22). While arginase activity remained constant, that of DDAH increased at D10 (+65%) and D16 (+51%) in agreement with western-blot and amino acids data (liquid chromatography tandem-mass spectrometry). Only DDAH-2 isoform appeared to be up-regulated at the transcriptional level throughout the infection process. Immunohistochemical staining further revealed that DDAH-1 and DDAH-2 are contained within interneurons and neurons, respectively. CONCLUSION/SIGNIFICANCE In the brain of infected animals, the lack of change observed in arginase activity indicates that polyamine production is not enhanced. Increases in DDAH-2 isoform may contribute to the overproduction of NO. These changes are at variance with those reported in the periphery. As a whole, the above processes may ensure additive protection against trypanosome entry into the brain, i.e., maintenance of NO trypanocidal pressure and limitation of polyamine production, necessary for trypanosome growth.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exploring the role of dimethylarginine dimethylaminohydrolase-mediated reduction in tissue asymmetrical dimethylarginine levels in cardio-protective mechanism of ischaemic postconditioning in rats

Objective(s): Reperfusion of ischaemic myocardium results in reduced nitric oxide (NO) biosynthesis by endothelial nitric oxide synthase (eNOS) leading to endothelial dysfunction and subsequent tissue damage. Impaired NO biosynthesis may be partly due to increased levels of asymmetrical dimethylarginine (ADMA), an endogenous inhibitor of eNOS. As dimethylarginine dimet...

متن کامل

Dimethylarginine dimethylaminohydrolase activity modulates ADMA levels, VEGF expression, and cell phenotype.

Asymmetric dimethylarginine (ADMA) is an endogenous inhibitor of nitric oxide synthase and is metabolised by dimethylarginine dimethylaminohydrolase (DDAH). Elevated levels of circulating ADMA correlate with various cardiovascular pathologies less is known about the cellular effects of altered DDAH activity. We modified DDAH activity in cells and measured the changes in ADMA levels, morphologic...

متن کامل

Evidence for dysregulation of dimethylarginine dimethylaminohydrolase I in chronic hypoxia-induced pulmonary hypertension.

BACKGROUND Chronic hypoxia-induced pulmonary hypertension is associated with increased pulmonary expression of nitric oxide synthase (NOS) enzymes. Nevertheless, some reports have indicated decreased pulmonary production of NO in the disease. To address this paradox, we determined pulmonary concentrations of the endogenous NOS inhibitor asymmetric dimethylarginine (ADMA) in the hypoxia-induced ...

متن کامل

Dimethylarginine Dimethylaminohydrolase-1 Transgenic Mice Are Not Protected from Ischemic Stroke

BACKGROUND Methylated arginines are endogenous analogues of L-arginine, the substrate for nitric oxide (NO) synthase. Asymmetric dimethylarginine (ADMA) interferes with NO formation, causing endothelial dysfunction. ADMA is a predictor of cardiovascular events and mortality in humans. It is eliminated primarily by enzymatic activity of dimethylarginine dimethylaminohydrolase (DDAH). METHODOLO...

متن کامل

Alterations of NOS, arginase, and DDAH protein expression in rabbit cavernous tissue after administration of cigarette smoke extract.

Cigarette smoking is an independent risk factor for vasculogenic erectile dysfunction (ED). Nitric oxide (NO) has been demonstrated to be the principal mediator of cavernous smooth muscle relaxation and penile erection. Therefore, we examined whether or not enzyme activities and factors involved in the NO generation pathway are affected in rabbit corpus cavernosum after administration of nicoti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2011